**What it is**

**Maths learning disabilities can be a debilitating problem in school and in later life. In today’s world, mathematical knowledge, reasoning, and skills are no less important than the ability to read. The effects of maths failure during the years of schooling, as well as maths illiteracy in adult life, can seriously handicap both daily living and vocational prospects.**

*Dyscalculia*, which means *inability to calculate*, is the most widely used term for disabilities in arithmetic and mathematics. Sometimes the term *acalculia* is used to refer to complete inability to use mathematical symbols and the term dyscalculia is reserved for less severe problems in these areas. *Developmental dyscalculia* may be used to distinguish the problem in children and youth from similar problems experienced by adults after severe head injuries.

No one seems to know when the word “dyscalculia” came to life — the earliest we have come across is an advertisement in the* New York Times *from May 1968 (see below). We do, however, know that researchers have used other words for what they found to be some sort of disability in maths (which they already found in the 1800s): arithmetic disability, arithmetic deficit, mathematical disability, and so on. The media has been using words like digit dyslexia, number blindness and the obvious maths dyslexia.

According to the British Dyslexia Association dyscalculia and dyslexia occur both independently of each other and together. Research suggests that 40-50% of dyslexics show no signs of dyscalculia. They perform at least as well in maths as other children, with about 10% achieving at a higher level. The remaining 50-60% do have difficulties with maths. Best estimates indicate that somewhere between 3% and 6% of the population are affected with dyscalculia only — i.e. people who *only *have difficulties with maths but have good or even excellent performance in other areas of learning.

**What are the symptoms?**

Dyscalculia symptoms include:

- Poor understanding of the signs +, -, ÷ and x, or may confuse these mathematical symbols.
- Difficulty with addition, subtraction, multiplication and division or may find it difficult to understand the words “plus,” “add,” “add-together.”
- Difficulty with times tables.
- Poor mental arithmetic skills.
- May have trouble even with a calculator due to difficulties in the process of feeding in variables.
- May reverse or transpose numbers for example 63 for 36, or 785 for 875.
- Difficulty with conceptualising time and judging the passing of time.
- Difficulty with everyday tasks like checking change.
- Difficulty keeping score during games.
- Inability to comprehend financial planning or budgeting, sometimes even at a basic level, for example, estimating the cost of the items in a shopping basket.
- Inability to grasp and remember mathematical concepts, rules, formulae, and sequences.
- May have a poor sense of direction (i.e., north, south, east, and west), potentially even with a compass.
- May have difficulty mentally estimating the measurement of an object or distance (e.g., whether something is 10 or 20 feet away).
- Extreme cases may lead to a phobia of mathematics and mathematical devices.

**Finding the cause will help solve a problem**

Successful intervention is dependent on finding the cause or causes of a problem. Most problems can only be solved if one knows their causes. A disease such as scurvy claimed the lives of thousands of seamen during their long sea voyages. The disease was cured fairly quickly once the cause was discovered, viz. a vitamin C deficiency. A viable point of departure would therefore be to ask the question, *“What causes dyscalculia?”*

**Mathematics consists of three aspects**

*Foundational skills:* Research has shown that visual perception, visual memory, and logical thinking (which makes problem solving possible) are the most important foundational skills of maths.

*Mathematical skills:* There are many things in mathematics that the learner must learn *to do*, like, for example, the skills of counting, of adding and subtracting, of multiplication and division.

*Knowledge:* There is much in maths that one simply has to know and therefore has to learn, for example many terms, definitions, symbols, theorems and axioms. These are all things that the learner must *know*, not things that he must know how to do.

**Learning a stratified process**

It should also be noted that learning is a *stratified process*. Certain skills have to be mastered *first, before *it becomes possible to master subsequent skills.

In order to be a cricket player, a person *first *has to master the foundational skills, e.g. batting, bowling, catching and fielding. In the same way, in order to do maths, a child *first *has to learn the foundational skills of maths, like visual perception and visual memory. The child who confuses the signs +, -, ÷ and ×, may have a problem with visual discrimination of forms and/or visual discrimination of position in space. A child who has a poor sense of direction (i.e., north, south, east, and west), may have a problem with visual discrimination of position in space, etc.

The second step would be to master mathematical skills, *which must be done in a sequential fashion*. One has to learn to count before it becomes possible to learn to add and subtract. Suppose one tried to teach a child, who had not yet learned to count, to add and subtract. This would be quite impossible and no amount of effort would ever succeed in teaching the child these skills. The child must learn to count *first, before *it becomes possible for him to learn to add and subtract.

The third step would be to ensure that a learner catches up in the knowledge aspect of maths.

**The bottom line**

The only solution for a problem like dyscalculia is to address the causes. Until we have done that, the child will continue to struggle. Contact Edublox for help.